
The Illusion of Control:

Trusting Software in the Age of

Compromise

Moin Rahman <moin@cybermancer.is>

mailto:moin@cybermancer.is

Who Am I?
• Conference hopper & repeat offender

• Focused on FreeBSD & Networking

• Active contributor to FreeBSD (Packaging, Release Engineering, CI)

• Independent consultant helping enterprises with building secured infrastructure

• Part of the FreeBSD ecosystem but here representing myself & my work

• Believer in open-source resilience & long-term stability

• Occasionally break things in the name of security & innovation

The Early Days of DIY Builds

• Not just about FreeBSD—applies to UNIX/Linux distributions

• In the past, we built everything ourselves

• Examples: Gentoo, Linux From Scratch (LFS), BSDs

• Over time, control shifted away from users

The Birth of Linux & Distributions
• 1991 – Linus Torvalds releases the Linux kernel

• Needed userland utilities, package management, a full OS

• Early Linux was built from source by users

• Distributions emerged to simplify the process:

• Slackware (1993), Debian (1993), Red Hat (1994), Gentoo (1999)

• Made Linux more accessible but reduced user control

Linux From Scratch: The DIY Approach
• 1999 – LFS created as a manual Linux build guide

• Why it mattered:

• Compile everything from source

• Learn how OS components fit together

• You are the package manager

• Challenges:

• Time-consuming, complex, not scalable

LFS: More Than Just DIY

• Educational value:

• Teaches kernel-userland interactions

• Understanding toolchains, linking, init systems

• Explains why package managers exist

• Valuable for security & system knowledge

I Built LFS and Got an Existential Crisis

Why Enterprises Stopped DIY Builds

• Time & Complexity – Building from source
isn’t scalable

• Reliance on Vendors – Prebuilt, “secure”
distributions

• Package Managers Took Over –
Convenience > Control

• Security Blind Spots – No transparency in
builds

The Illusion of Control: Prebuilt Binaries Are a Risk

• Where do binaries come from?

• Upstream maintainers?

• Package repositories?

• Automated CI/CD systems?

• Key issues:

• No guarantee binaries match source code

• Dependencies change silently

• Recent attacks (SolarWinds, XZ
Backdoor) prove the risk

Does This Sound Like Zero Trust?
• Zero Trust Principles:

• Never trust, always verify

• Assume compromise

• Reduce attack surface

• Reality:

• Prebuilt binaries = Trusting someone else’s security

• If you don’t control your build, you don’t control security

The Cultural Shift – From DIY to Blind Trust

• Why did this happen?

• Package managers simplified updates

• Security updates & automation prioritized
over ownership

• Enterprises chose efficiency over control

• Result:

• Security is assumed, not verified

• Enterprises trust vendor binaries without
proof

We Need a Better Way – Enter Zero Trust Builds

• Principles of Zero Trust Builds:

• Verify everything deployed

• Remove trust assumptions in artifacts

• Control the full software supply chain

 Traditional Model Zero Trust Build Model

Trust vendor binaries Own your build pipeline

Assume security is tested Verify every step

Blindly accept updates Audit & reproduce builds

How OS Build Systems Work Today

1. Source Code is Pulled

2. Automated CI/CD Builds

3. Packages & OS Components Are
Generated

4. Installation Media & Artifacts Created

5. Distributed via Package Managers

• Issues: Opaque processes, silent
dependency changes, attack vectors

Who Signs the Binaries?
• Key questions:

• Trust the source code or the compiled
binaries?

• Recent Attacks:

• SolarWinds (2020), XZ Backdoor (2024),
CCleaner (2017)

• Reality:

• Signed binaries ≠ Secure binaries

• Without build control, you don’t own your
security

Implementing Zero Trust in Software Builds

1. Source Selection – Trusted repositories only

2. Reproducible Builds – Deterministic output

3. Isolated Build Environments – Hardened pipelines

4. Cryptographic Verification – Sign & verify integrity

One Character Off
• https://github.com/freebsd

• https://github.com/free6sd

• One character difference - Full Pipeline Compromise

• Typo-Squatted URLs often go unnoticed

• Exploiting trust in URLs and human review fatigue

• Will the build system detect this?

https://github.com/freebsd
https://github.com/free6sd

Legendary 90s mischief

:(){ :|:& }:;

Twenty First Century ForkBomb

The Hidden Challenge
• Reproducibility is hard - even in Open

Source

• Key challenges that break reproducibility:

• Timestamp and Non-Deterministic Data

• Out-of-order Compilation

• Hardcoded Absolute Paths

• Embedded Random Data (UUIDs,
seeds)

• Locale-Sensitive Builds

• Uncontrolled Internet Dependencies

• The result

• If upstream is not
reproducible, neither can
enterprise be

• Creates blind spots in
verifying software integrity

What Upstream Developer can do?
• Reproducibility starts upstream:

• Normalize timestamps using SOURCE_DATE_EPOCH

• Ensure deterministic build processes

• Avoid hardcoded paths and hostnames

• Minimize random data and set fixed seeds

• Standardize locale and environment settings

• Pin dependencies and avoid dynamic Internet pulls

• Use tools like diffoscope for reproducibility checks

• Why it matters:

• Strengthen trust in Open Source supply chain

• Enables enterprises to verify builds confidently

• Reduce the risk of hidden compromises in software stack

The Reproducible Builds Project
• Goal: Ensure that source code consistently produces identical binaries.

• Why It Matters:

• Detects tampering or malicious modifications in the build process.

• Builds trust by enabling independent verification of software artifacts.

• Key Challenges Addressed:

• Timestamps, locale, and randomness affecting builds.

• Dependency management to prevent upstream drift.

• Promoting deterministic build environments across ecosystems.

• Regularly Testing Reproducibility In:

• Debian, Arch Linux, FreeBSD, OpenBSD, Guix, NixOS, Alpine, Fedora, openSUSE

Next Steps for Enterprises
• Identify critical software dependencies

• Pick a key package & verify its build process

• Use reproducibility tools (Debian, FreeBSD, OpenBSD)

• Reduce reliance on external package repositories

• Treat build integrity as part of security

• Zero Trust Builds don’t happen overnight—start small, improve
continuously

Final Thought – The Price of Convenience
• Security vs. Convenience is always a trade-off.

• We used to build everything ourselves.

• Then we trusted package managers.

• Now we trust CI/CD pipelines and upstream maintainers.

• We used to build everything → Trusted package managers → Now trust CI/CD pipelines

• Where do we draw the line?

• At some point, convenience stops being an optimization and starts being a risk.

• Passion writes the code, but money decides its future—open or closed.

• Even in open source, sustainability is built on financial reality.

Thank You & Q&A

• Let’s discuss:

• What’s stopping you from verifying your own artifacts?

• What steps can your organization take toward Zero Trust Builds?

• What risks are acceptable in your software supply chain?

