The lllusion of Control:
Trusting Software in the Age of
Compromise

Moin Rahman <moin@cybermancer.is>

mailto:moin@cybermancer.is

Who Am |?

Conference hopper & repeat offender

Focused on FreeBSD & Networking

Active contributor to FreeBSD (Packaging, Release Engineering, Cl)
Independent consultant helping enterprises with building secured infrastructure
Part of the FreeBSD ecosystem but here representing myself & my work
Believer in open-source resilience & long-term stability

Occasionally break things in the name of security & innovation

The Early Days of DIY Builds

Not just about FreeBSD —applies to UNIX/Linux distributions
In the past, we built everything ourselves
Examples: Gentoo, Linux From Scratch (LFS), BSDs

Over time, control shifted away from users

The Birth of Linux & Distributions

1991 - Linus Torvalds releases the Linux kernel
 Needed userland utilities, package management, a full OS
e Early Linux was built from source by users
* Distributions emerged to simplify the process:
o Slackware (1993), Debian (1993), Red Hat (1994), Gentoo (1999)

e Made Linux more accessible but reduced user control

Linux From Scratch: The DIY Approach

e 1999 - LFS created as a manual Linux build guide
 Why it mattered:

 Compile everything from source

* Learn how OS components fit together

* You are the package manager
* Challenges:

* Time-consuming, complex, not scalable

LFS: More Than Just DIY

* Educational value:
* [eaches kernel-userland interactions
* Understanding toolchains, linking, init systems
 EXxplains why package managers exist

e Valuable for security & system knowledge

| Built LFS and Got an Existential Crisis

AS APROJECT WEARS ON, STANDARDS
FOR SUCCESS SLIP LOWER AND LOWER.

7~ BEABLE TO DUAL- O
BOOT BSD SCON. /
K € WELL, THE DESKTOPS A LOST CAUSE, X\ -

Bur I THINK I CAN FIX THE JL

PRORLEMS THE LAPTOPS DEVELOPED

6 HOURS LApows S
s IF WERE L LUCKY, HE SHERS WILL STAY
T BE HAPPY IF I CANGET AWAY UNTIL WE REACH SHALLOW WATER.
THE SYSTEM WORKING LIKE ~ T /
T WAS WHEN T STARTED. - S8 L O IFWE MAKE ITBAK ALIVE, YOURE

NEVER UPGRADING ANYTHING AGAIN.

Why Enterprises Stopped DIY Builds

 Time & Complexity — Building from source
Isn’t scalable ﬂ ME COST

 Reliance on Vendors - Prebuilt, “secure” STRATEGY A
distributions GTRATEGY B

» Package Managers Took Over — ANALYZING \JHETHER
Convenience > Control STRATEGY A OR B

o | 19 MORE. EFFICIENT
e Security Blind Spots — No transparency in
builds THE REASON I AM S0 INEFFICIENT

The lllusion of Control: Prebuilt Binaries Are a Risk

L ALL MODERN DIGITAL
o ?
Where do binaries come from®. INFRASTRUCTURE
)
e Upstream maintainers?
 Package repositories?
 Automated CI/CD systems?
* Keylissues: A PROTECT SOME
RANDOM PERSON
 No guarantee binaries match source code IN NEBRASKA HAS
BEEN THANKLESSLY
| | MAINTAINING
 Dependencies change silently SINCE 2003
 Recent attacks (SolarWinds, XZ E_T‘J
Backdoor) prove the risk 1

Does This Sound Like Zero Trust?

 Zero Trust Principles:
* Never trust, always verify
 Assume compromise
 Reduce attack surface
e Reality:
* Prebuilt binaries = Trusting someone else’s security

* |f you don’t control your build, you don’t control security

The Cultural Shift = From DIY to Blind Trust

"I SPEND A LOT OF TIME ONTHISTRSK.
« Why did this happen? T SHOULD LIRITE A PROGRAM AUTOMATING IT!'

 Package managers simplified updates

e Security updates & automation prioritized
over ownership

* Enterprises chose efficiency over control
* Result:
e Security is assumed, not verified

. Ep;tg;pnses trust vendor binaries without ANYVIORE

We Need a Better Way - Enter Zero Trust Builds

Traditional Model Zero Trust Build Model

* Principles of Zero Trust Builds:
Trust vendor binaries Own your build pipeline

* Verify everything deployed
 Remove trust assumptions in artifacts

Assume security Is tested Verify every step
* Control the full software supply chain

Blindly accept updates Audit & reproduce builds

How OS Build Systems Work Today

4.

5.

. Source Code is Pulled
. Automated CI/CD Builds

. Packages & OS Components Are

Generated
Installation Media & Artifacts Created
Distributed via Package Managers

Issues: Opaque processes, silent
dependency changes, attack vectors

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TOWORK! ~/

Key questions:

Trust the source code or the compiled
binaries?

Recent Attacks:

* SolarWinds (2020), XZ Backdoor (2024),
CCleaner (2017)

Reality:
* Signed binaries # Secure binaries

* Without build control, you don’t own your
security

Who Signs the Binaries?

LUHY ARE PEOFLE S50 (COMFORTABLE

HANDING GOOGLE. AND fACEBOOK
ALL THIS CONTROL OVER OUR LIVES?

L DUNl:lO

OUR SPECIES BUILT THOUSANDS
OF NUCLEAR WEAFDNS, SCATTERED
THEX1 ARDUND THE PLANET, AND
THEN MOVED ON TO OTHER THINGS.

\
MAYBE. ITS BEST TO ACLEPT THAT
\SDNE OF THIS BIG-PICTURE. PLANNING

15 JUST HAPPENING ON AUTOPILOT

J

Implementing Zero Trust in Software Builds

1. Source Selection - Trusted repositories only
2. Reproducible Builds — Deterministic output
3. Isolated Build Environments — Hardened pipelines

4. Cryptographic Verification — Sign & verify integrity

One Character Off

https://github.com/freebsd

https://github.com/free6sd

One character difference - Full Pipeline Compromise
Typo-Squatted URLs often go unnoticed
Exploiting trust in URLs and human review fatigue

Will the build system detect this?

https://github.com/freebsd
https://github.com/free6sd

Legendary 90s mischief

(O :1:& }:;

Twenty First Century ForkBomb

=VSCOde Public (> Watch 3346 ~ % Fork 315k

1F tensorflow Public (> Watch 7507 ~ % Fork 74.6k

¥ node Public & Watch 2947 ~ % Fork 31.3k

® kubernetes Frublic G Watch 3216 ~ % Fork 40.4k

@ react Public & Watch 6737 ~ %’ Fork 48.3k

The Hidden Challenge

* Reproducibility is hard - even in Open
Source

 Key challenges that break reproducibility: e [he result

 Timestamp and Non-Deterministic Data
e If upstream is not

+ Out-of-order Compilation reproducible, neither can
« Hardcoded Absolute Paths enterprise be

« Embedded Random Data (UUIDs,

seeds) * Creates blind spots in

verifying software integrity
* |Locale-Sensitive Builds

 Uncontrolled Internet Dependencies

What Upstream

* Reproducibility starts upstream:

Normalize timestamps using SOURCE_DATE_EPOCH
Ensure deterministic build processes

Avoid hardcoded paths and hostnames

Minimize random data and set fixed seeds
Standardize locale and environment settings

Pin dependencies and avoid dynamic Internet pulls

Use tools like diffoscope for reproducibility checks

 Why it matters:

* Reduce the risk of hidden compromises in software stack

Strengthen trust in Open Source supply chain

Enables enterprises to verify builds confidently

Developer can do?

WE NEED TO MAKE 500 HOLES IN THAT WALL,
50 TVE BUILT THIS AUTOMATIC DRILL. ITUSES
ELEGANT PRECISION GEARS TO CONTINUALLY
ADJUST ITS TORAVE AND SPEED AS NEEDED:

GREAT; IT'S THE PERFELT \JEIGHT!
WELL LOAD 3500 OF THEM INTO
THE CANNON LJE MADE AND
SHOOT THEM AT THE WALL.

HOW SOFTWARE. DEVELOPMENT WORKS

The Reproducible Builds Project

* Goal: Ensure that source code consistently produces identical binaries.
 Why It Matters:
* Detects tampering or malicious modifications in the build process.
e Builds trust by enabling independent verification of software artifacts.
 Key Challenges Addressed:
 Timestamps, locale, and randomness affecting builds.
 Dependency management to prevent upstream drift.
* Promoting deterministic build environments across ecosystems.
* Regularly Testing Reproducibility In:

 Debian, Arch Linux, FreeBSD, OpenBSD, Guix, NixOS, Alpine, Fedora, openSUSE

Next Steps for Enterprises

|dentify critical software dependencies

Pick a key package & verify its build process

Use reproducibility tools (Debian, FreeBSD, OpenBSD)
Reduce reliance on external package repositories
Treat build integrity as part of security

Zero Trust Builds don’t happen overnight—start small, immprove
continuously

Final Thought — The Price of Convenience

* Security vs. Convenience is always a trade-off.
* We used to build everything ourselves.
 Then we trusted package managers.
 Now we trust CI/CD pipelines and upstream maintainers.
* We used to build everything — Trusted package managers — Now trust CI/CD pipelines
 Where do we draw the line?
* At some point, convenience stops being an optimization and starts being a risk.
 Passion writes the code, but money decides its future—open or closed.

 Even in open source, sustainabillity is built on financial reality.

Thank You & Q&A

* Let’s discuss:
 What’s stopping you from verifying your own artifacts?
 What steps can your organization take toward Zero Trust Builds?

 \What risks are acceptable in your software supply chain?

