
Ultra Ethernet
Johan Ervenius
Systems Engineer, Arista Networks

JCT
Job Completion Time

xPUs processing
data

Time spent in
networking

What’s the Problem?

AI and HPC networks are different

● Endpoints are fast, Load is high
● Flows are few and high BW
● RTTs are short
● Flows are synchronized
● Completion time determined by slowest flow

Vanilla networking doesn’t meet the needs

Ultra Ethernet Consortium – Who and Why

Mission:
Advance an Ethernet-Based Open, Interoperable, High-Performance

Full-Stack architecture to meet the Growing Demands of AI and HPC at Scale

>100 member companies
>1300 active participants

Ultra Ethernet Consortium Activities

● Many working groups
● 1 specification, many layers
● The spec is 500 pages

UEC is a JDF project and an
International Standards Organization

RMA is critical to performance
● Accelerators today communicate with RMA

● RMA is hardware delivery straight to/from
memory

○ Kernel bypass, zero-copy

○ Hardware loss detection, retrans, loss recovery

● RDMA over IP (RoCEv2) is a widely deployed
RMA implementation

RMA is a great concept

RoCE headers

Ethernet is the right foundation for RMA

● Broad ecosystem

○ NICs, switches, optics, cables

○ Multi-vendor at all layers

● Rapid innovation

● Many tools for operations, management, testing

● Scales to millions: addressing, routing, management, provisioning

● Universally understood - books, courses, websites, classes, …

UEC builds on Ethernet

1973-2025

50 years

Ethernet

Why revisit RMA … especially RoCE?

● Lack of multipathing

○ in-order packet delivery is limiting

● Go-back-N Recovery is inefficient, forcing lossless networks

● Congestion control (DCQCN) is hard to tune, not easy to (inter)operate

● Scale requirements are increasing

● Integrated security is important

RMA is great, but it’s time to revisit the protocol

RDMA @ 25

Load Balancing
The Key Problem to Solve

Flows and packet ordering

● Networks today keep packets within a single L4 flow in order

● Because transport protocols (TCP, RDMA) don’t like out of order packets
○ out-of-order packets are interpreted as loss

○ repeated loss is interpreted as congestion

○ congestion results in slowing down

5 14 23

5 14 23

5 14 23

so don’t reorder packets within a flow

Choosing a path for each flow

Spreading flows over all ECMP paths

● Generally, with a hash of L4 ports and IP

● Works great if many small flows per link SIP
DIP

sport dport
len cksum

protottl ip cksum
frag offsetflgidentification

ver ihl tos ip len

hash

0xfe74

Ethernet3

...but it’s hard to spread flows evenly when there are not many

So, how good is flow hashing?

Average
Utilization

32 servers at 100G with 80 flows each at 1Gbps, 32 uplinks

99.95% throughput - great

slowwire rate

link capacity =
100 flows

Average
Utilization

32 servers at 100G with 8 flows each at 10Gbps, 32 uplinks

96.8% throughput - ok

wire rate slow

link capacity = 10 flows

Worst case

32 servers at 100G with 8 flows each at 10Gbps, 32 uplinks

71% efficiency is the expected performance of the worst-case

slow

link capacity

typical worst case is
1.4 x capacity

What if…
One flow could use ALL the paths?

forget about keeping packets of a flow in order…

5

1

4

2

3

12345

Worst case

32 servers, packet-sprayed 204 ways on 32 uplinks

80% offered load

99.98% efficient for an application driven by worst-case

all flows wire rate

typical worst case is
only 91% of capacity

some flows slow

but TCP and vanilla RDMA don’t work

Ultra Ethernet Transport

Enable the transport protocol to spray

● Don’t insist on packet ordering within a flow
● Tag packets with their ultimate destination

○ eliminates the need to reorder on arrival
○ packets can be immediately placed in memory

UET: RMA with out-of-order arrivals

XPU 1NIC

2

3

4

0xf37a
b392

0xf37a
b456

0x0867
5309

posted
buffers

n

5

0x0867
5309

A key tenet of the UET

Packet Spraying Challenge

Loss Detection in an OOO protocol

● Generally, timeout or out-of-order implies loss

● With spraying, out of order is not a simple concept

○ packets taking different paths can arrive in any order

● Fast timeouts are made harder because of variable delay across paths

123 456 7 8
9ab cde f

8,5,6,d,2,7,4,c,3, …

?
?

? ?

?

Need new methods to detect loss

Packet trimming

Chop, don’t drop!

● Truncate (“trim”) to 64 bytes instead of dropping

● Mark the DSCP as “trimmed”

● Enqueue truncated pkt in high priority queue for a faster congestion signal

x
drop?

hi

lo

truncate remark enqueue

transmit

header

packet

body

no

yes

Switch support for fast loss detection

Packet Spraying Challenge

Congestion Control with
high bandwidth and short RTT

● How is UET CC different from TCP?

● Get to wire rate very quickly

○ 1MB takes 10 usec at 800gbps = 1 RTT

○ Must back off quickly when congestion is noticed

● No time to wait for TCP slow start

Need new methods to detect loss

Fast Speed-Up and Slow-Down

● We need to ramp quickly and slow down quickly

● Losses and/or delays tell the transport to slow-down

● UET needs new algorithms for a sprayed network

Existing transports are too slow and/or
depend on ordering

UET congestion control

Network Signal Congestion Control (NSCC)

● Sender-based (default)

● Fast ramp, fast slowdown

● Optimized to detect core congestion
● Uses 3 congestion signals

○ Delay tracked as time from sending packet to receiving ACK

○ ECN as leading indicator of queuing

○ Trimming as indication of drops

Handles spraying and OOO

sender control

UET congestion control

Receiver-credit congestion control

● Receiver-based (optional)

● Optimized for handling Incast

● Receiver-generated credit

● Optimistic transmission before credits received

● Looks a lot like a VOQ architecture

receiver control

Works along or with sender based

UET Packet

Ethernet header

IPv4 or IPv6 header

UDP header (optional)

Entropy header (present if no UDP header)

TSS Header (optional)

PDS header

SES header

UET Payload

UET CRC (optional) or TSS ICV (optional)

Ethernet FCS

L2

L3

L4

UET

L2

Network header

UET header

UET payload

UET trailer

Ultra Ethernet Across the Layers

Application, Transport, Network, Link Layer

libfabric
by the OpenFabrics Alliance
● UEC selected libfabric 2.0 as a modern API

● Generic APIs for High Performance Communication

○ RMA

○ Tagged messages, Atomics

○ Collective operations

○ event queues, completion queues

Sockets API isn’t rich enough for HPC/AI

Link-layer retransmission

● Link and transceiver failures are a fact — and impact workloads

● An AI/HPC datacenter could have 256,000-512,000 transceivers

● Local retransmission to avoid end-to-end retransmits

Improves tail latency

Link-layer retransmission

Improves tail latency

LLDP

NACK

packet stored
until ACKed

ACK / NACK via
802.3 “OCodes”

LLDP negotiation

hardware
retransmission

ACK

Future

UEC will continue after the 1.0 release

Sooner
● Storage - Storage APIs on UET

● Management - OpenConfig / RedFish

● Compliance and Testing, for profiles and
optional features

● Performance and Debugging

● Telemetry - CSIG and BTS

● In Network Compute

Later, maybe…
● Programmable congestion control

● More topologies - DragonFly,
DragonFly+, Slimfly, xFly

● UET for regional / metro?

● Scale-up?

In Conclusion

Networks for AI

● Ethernet: the standard solution for AI and HPC networks

○ Ethernet does and will support the features critical to AI and HPC

○ Ethernet will scale to 1,000,000s of GPUs

● Ultra Ethernet is ready for AI and HPC of the future

Thank you!

