

Marcus Dansarie Roughtime: Securing time for loT devices

Correct time is important

- Many security-critical applications require accurate time
- DNSSEC enables secure DNS lookups
- TLS the foundation of many other protocols
 - HTTPS everything on the web
 - SMTPS, IMAPS, POP3S secure mail

0.

- Authentication tokens and two-factor authentication
- Cyber-physical systems
- Logs
- Accuracy requirements vary: sub-second to hours

Consequences of not having correct time

- Loss of confidentiality and integrity: Accepting expired or revoked certificates and tokens
- Loss of availability: Certificate & token validation failures
- Loss of traceability: Inaccurate or ambiguous log files

Keeping time

- All devices
 - \circ need time on first use
 - \circ can keep time when powered on
- Real time clocks (RTC)
 - limited accuracy
 - IoT devices may not have an RTC
- Conclusion: external time updates are required

Getting time over the network

• NTP – Network Time Protocol

- Often used with a single server (SNTP)
- Often used without authentication
- Symmetric authentication
- Autokey (broken)
- NTS Network Time Security
 - Adds scalable security to NTP
 - \circ Depends on TLS
 - Requires correct time
 - Requires up-to-date CA certificates
 - Low adoption

Possible solution: Roughtime

- Protocol is an IETF Draft
 - Watson Ladd (Akamai)
 - Marcus Dansarie (Netnod)
- Started out as a way to verify system time
 - Not intended to replace NTP or NTS
- Netnod received RIPE community funding to help kickstart the development of Roughtime and the IETF draft

Roughtime: concepts

- Servers have long-term public keys
 - Tradeoff: turns time bootstrapping problem into a key distribution problem
 - Uses Ed25519 signatures & Merkle trees
 - Intended for devices where the server list can be updated
- Client asks **multiple servers** for time
 - Checks that responses are consistent
 - Removes single point of failure/attack
- Possible to cryptographically prove server malfeasance

Roughtime: details

- Responses include a time and radius
 - Single-second resolution
 - Servers guarantee that true time is within radius
- A 32-byte hash of the request is included in the Merkle tree
 - Allows timestamping of arbitrary data
 - Chaining of responses

Roughtime: evolution

- It is now a decent generic time protocol
 - Secure by default
 - Fairly low CPU usage and small memory footprint
 - Can prove server malfeasance
 - Can timestamp arbitrary data
- Hackathon at IETF 121 in November 2024
 - Discovered and fixed security issues
 - Multiple interoperating implementations

Roughtime: next steps

- Intended status: experimental RFC
- IETF working group last call
- Updating implementations
- Building a robust ecosystem of servers and implementations

Roughtime: test it

- Cloudflare (server & client)
 - https://github.com/cloudflare/roughtime
- Craggy (client)
 - https://github.com/nahojkap/craggy
- Pyroughtime (server & client)
 - <u>https://github.com/dansarie/pyroughtime</u>
- Roughenough (server & client)
 - https://github.com/int08h/roughenough
- Roughtimed (server)
 - https://github.com/dansarie/roughtimed
- Most come with a list of servers (ecosystem.json)
 - If not, just use roughtime.se

