End-to-end troubleshooting in Data Centers

Agenda

- Background
- Why is Troubleshooting different today
- Troubleshooting tools for a modern DC
 - Built in features
- Building a universal monitoring fabric
- Summary

Why Network Visibility?

Why is troubleshooting different today?

15 years ago...Data Center Networks

- Applications
 - 3-tiered and fever dependencies
 - Applications were hosted in the same Data Center
- Traffic volumes
 - Relative low traffic volumes
 - North-south traffic
- Data Center Networks
 - Layer 2 based
 - 1/10 G server connections

15 years ago.... Troubleshooting

CLI PER DEVICE

Per device/interface CLI troubleshooting

SPAN PORTS

From one switch to Wireshark

TAPS

North – south traffic

SNMP

Polling devices for state every 5 min

Data Centers of today....

- Distributed applications
 - Anyone anywere
 - No one knows "communication paths" for an application
- Traffic volumes
 - East-West traffic
- Design
 - Leaf/Spine topology with multiple active paths Leaf switches
 - Multi-tenancy
 - VXLAN overlay
 - 100-200 Gbit/s server connections

Traffic is tunneled....

Troubleshooting of today

What to expect from the switches

Questions

- What built-in features and tools are typically available in switches?
- How can my Network Monitoring System enhance troubleshooting efforts?
- Where should I capture network traffic to supply NPM, APM, and security tools?
- How can I develop a universal solution for troubleshooting?

1. Streaming Telemetry

- Streaming telemetry is a push mechanism
- Every events/state/counters continuously streamed from all devices
- Store data in a Time-series database
- Vendor specific Telemetry Paths & OpenConfig standardization

Polling Data == Missing Data

Benefits of Streaming Telemetry

- Large amount of telemetry data streamed to a Data Lake
- Data in the Data Lake accessed by switch vendor Network Monitoring Systems and/or 3rd party applications
- Use of ML/AI will provide baselining, anomaly detection
- NetOps will have a real-time operational view of the network
- Dashboards and events based on real-time data

2. Inband Network Telemetry

- Visualize a flow through the network with per-hop latency
- Each switch insert their state onto the packet
- Provide answers to questions
 - Which path did my packet take
 - How long did it queue at each switch
 - Who did it share the queues with
 - Which node in the packet path did congestion originate
 - Congestion levels and drop counts

Inband Network Telemetry- visualization

Path Recorded: (3) 21:37:56.518

r0.leaf0.pod0.pdx

Bytes: 787.0 MB (47.06%) Packets: 27k

3. Microbursts to catch a performance killer

Latency Analyzer

- Real-time visibility of microbursts and the hardware buffers
- Monitors output queue lengths to provide congestion information for each individual interfaces
- threshold based reports for
 - latency added
 - packets dropped
 - queue depth on interface during congestion and micro congestion per interface

Hands down..... CLI is sometimes (read always) helpful

Some features handy when need to do debug and troubleshoot locally on a switch

Mirroring to CPU

- Local mirroring of traffic to CPU
- Analyzed locally without the need of a remote port analyzer
- Apply filters to the mirroring traffic

Mirror on drop

- allows monitoring of IP flow drops occurring in the ingress pipeline
- When drops are detected, it is sent to the control plane where it is processed and then sent to configured collectors

```
switch(config)#monitor session ingressSession source Ethernet 1 rx
switch(config)#monitor session ingressSession destination Cpu

switch(config)#monitor session egressSession source Ethernet 2 tx
switch(config)#monitor session egressSession destination Cpu

switch(config)#monitor session bothSession source Ethernet 3 both
switch(config)#monitor session bothSession destination Cpu
```

```
switch# show flow tracking mirror-on-drop
Flow Tracking Status
 Type: Mirror on drop
 Running: yes, enabled by the 'flow tracking mirror-on-drop' command
 Sample limit: 10
 Encapsulation: IPv4, IPv6
 Encapsulation filter: IPv4 uRPF, IPv6 uRPF
 Tracker: mod1
   Active interval: 300000 ms
   Inactive timeout: 15000 ms
   Groups:
   Exporter: exp1
     VRF: default
     Local interface: Ethernet3/1 (10.1.0.1, fc00::1)
     Export format: Sflow
     DSCP: 0
      Collectors:
       10.0.0.1 port 4739
       fc00::15 port 4739
```


Troubleshooting Host-to-Host

sFlow Visualization

- sFlow offers comprehensive, network-wide visibility
- Leverage L2-L7 end to end visibility from source to destination
- sFlow runs on all devices, without impacting dataplane forwarding
- sFlow utilizes statistical sampling to collect data efficiently
- sFlow is a cost-effective solution for network monitoring

sFlow

- The sFlow datagram, sent by the sFlow Agent, includes a significant amount of detailed data
 - Packet header (eg MAC,IPv4,IPv6,TCP,UDP,ICMP....)
 - Input/output ports
 - QoS
 - VLAN
 - Source/destination prefix
 - Next hop address
 - Source AS, Source Peer AS
 - $\circ \qquad \dots \text{ and many more }$
- Data is visualized in dashboards
- Drill down to each individual flow

Building a Monitoring Fabric

...back to the six men and the elephant

How to get the data to the tools

Monitoring Fabric/ Network Packet Broker

Scale Out the Packet Broker fabric

Data Center Monitoring Fabric

Summary

- Diagnosing application performance issues can be complex in modern large-scale data centers
- Utilize the built-in diagnostics tools provided by your switch vendor
- Allocate resources for tools that aid in effective troubleshooting
- Ensure network data is accessible to all relevant tools and teams
- Packets don't lie—gaining access to packets are essential for pinpointing the root cause

THANK YOU