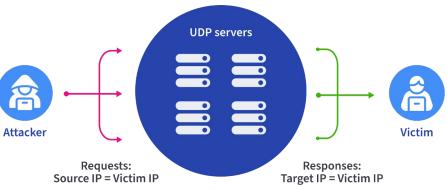

Fighting DDoS at the Source

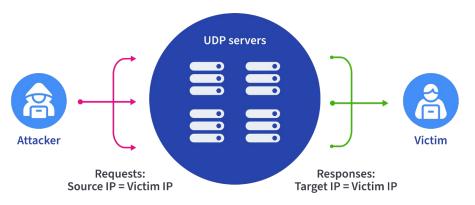
Nina Bargisen

Fighting DDoS at the Source


- Distributed denial of service (DDoS) attacks continue to plague the Internet.
- One of the most common forms of DDoS attack is the **reflection attack**.

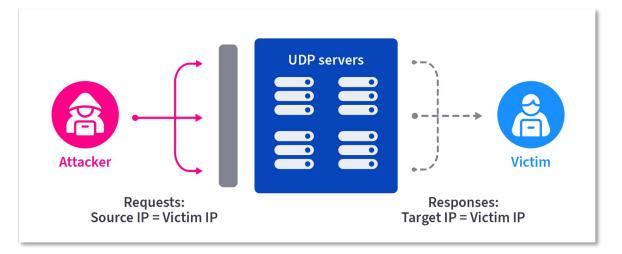
Reflection attack

Reflection attacks


- The attacker sends thousands of requests with "spoofed" source IP addresses.
- The requests are sent to DNS, NTP etc servers who replies
- The target address is flooded with the replies
- The service becomes degraded or unavailable

Reflection attack

Reflection attacks


- One of the largest **reflection** attacks was targeted Google Cloud in 2017
- The attack **originated** in 4 chinese networks ((ASNs 4134, 4837, 58453, and 9394)
- The attackers used the networks to spoof 167 Mpps (millions of packets per second) to 180,000 exposed CLDAP, DNS, and SMTP servers
- The attack peaked at 2.54 Tbps

Reflection attack

Source: https://www.zdnet.com/article/google-says-it-mitigated-a-2-54-tbps-ddos-attack-in-2017-largest-known-to-date/

Addressing the problem

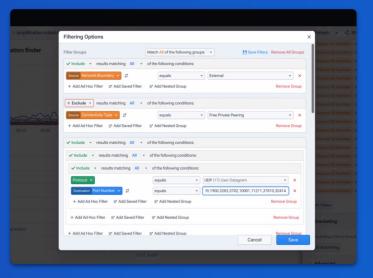
- 1. Secure internet devices from responding to UDP queries from the Internet
- 2. Eliminate spoofed traffic via technical means (Source IP verification)
- 3. Identify and engage networks originating spoofed traffic

Source IP verification (BCP38)

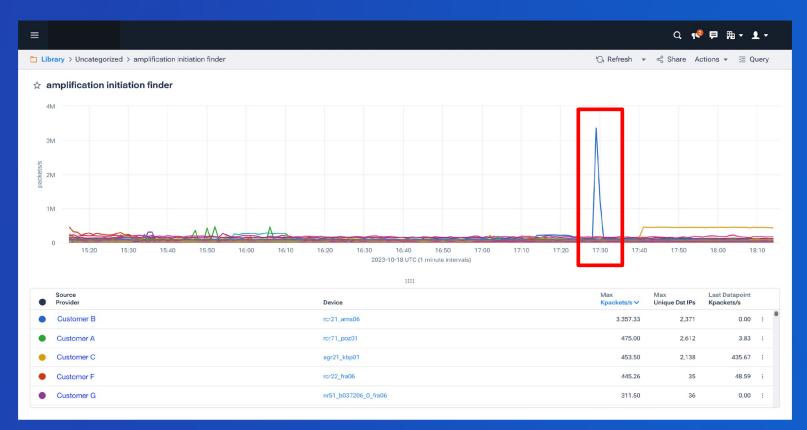
Source IP verification

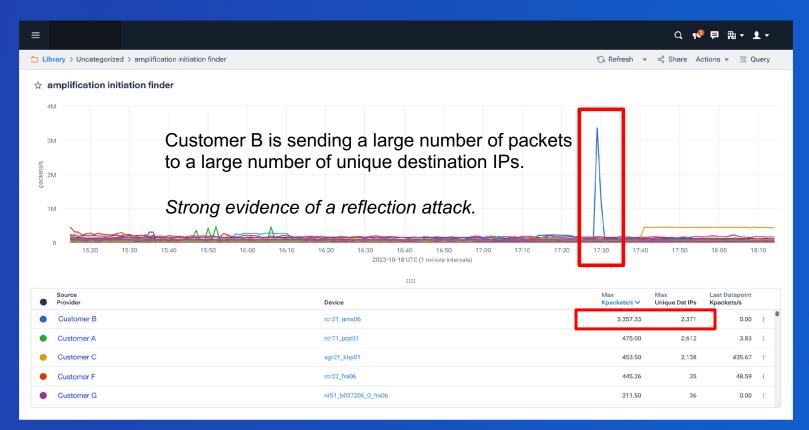
• Checks **source IPs** of packets against permitted **addresses**.

Methods of Implementation

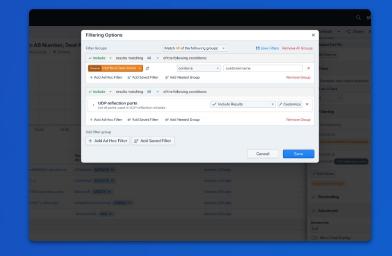

- Strict Reverse Path Forwarding (**sRPF**):
 - Drops packets arriving on **incorrect** interface.
 - Requires **symmetric** routing
- Feasible Reverse Path Forwarding (**fRPF**):
 - Considers **all paths** to the source address.
 - Risk of **blackholing**
- Ingress Access Control Lists (ACLs)
 - Requires manual maintenance.
 - Considered bulletproof if maintained properly.
 - Best fit for **non-dynamic** configurations and **few** used prefixes.

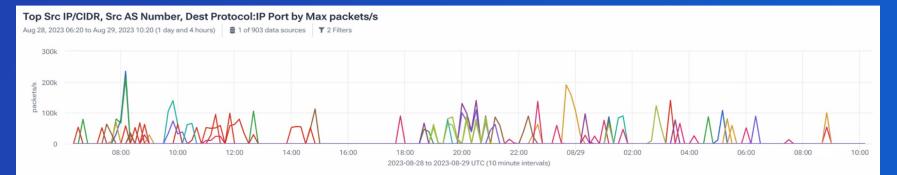
A backbone provider uses a customized workflow to identify customer networks which are sending traffic in violation of BCP38. Methodology boils down to two steps:


Find spikes of packets from customer networks to a large set of unique destination IP addresses using commonly abused UDP ports. For any suspicious spikes in packets to those selected UDP ports, investigate the source IPs of these packets coming from that customer.


Run a query that captures the following:

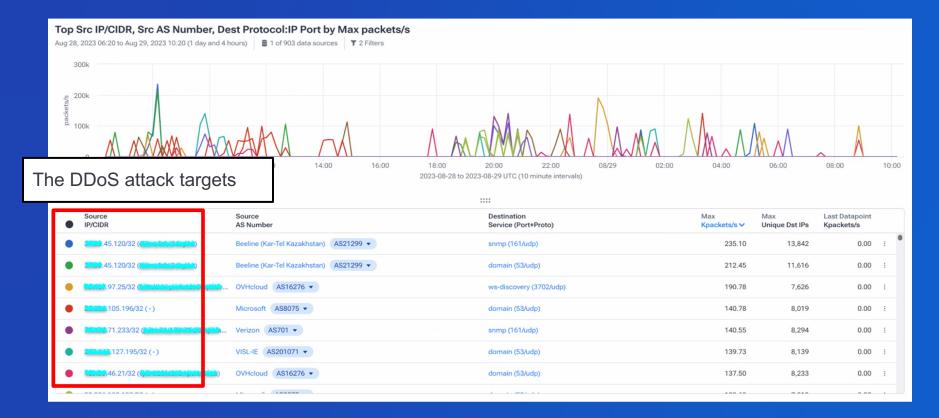
- Only traffic from an external source
- Only packets directed to commonly abused reflection ports.*
- Set metrics to
 - Packets/sec (not bps)
 - Unique number of destination IPs
- Group by customer and device


* 19, 53, 123, 161, 389, 427, 1900, 3283, 3702, 10001, 10074, 11211, 37810, 32414



Now we want to investigate the source IPs of these packets coming from that customer by running a query that captures the following:

- Only packets to abused UDP ports from the customer interface.
 - Group by source IP/ASN
 - Group by destination port
- Still set metrics to
 - Packets/sec (not bps)
 - Unique number of destination IPs



	Source IP/CIDR	Source AS Number	Destination Service (Port+Proto)	Max Kpackets/s ✔	Max Unique Dst IPs	Last Datapoint Kpackets/s	
•	.45.120/32 (Char Constant)	Beeline (Kar-Tel Kazakhstan) AS21299 🔻	snmp (161/udp)	235.10	13,842	0.00 :	•
٠	.45.120/32 ((1000)(1002)(100))	Beeline (Kar-Tel Kazakhstan) AS21299 -	domain (53/udp)	212.45	11,616	0.00 :	
•	C. 121 .97.25/32 (C. 10.000 (C. 10.000)	OVHcloud AS16276 -	ws-discovery (3702/udp)	190.78	7,626	0.00 :	
•	105.196/32(-)	Microsoft AS8075 -	domain (53/udp)	140.78	8,019	0.00 :	
٠	11110 71.233/32 (12/10/00/075/200.))/	Verizon AS701 🔻	snmp (161/udp)	140.55	8,294	0.00 :	
٠	117.103 .127.195/32 (-)	VISL-IE AS201071 -	domain (53/udp)	139.73	8,139	0.00 :	
٠	100.100 .46.21/32 (1, 170.011270.1, 170.011)	OVHcloud AS16276 -	domain (53/udp)	137.50	8,233	0.00 :	
-	00 007 405 400 00 1 1	10 A 100000	1 1 100 1 1 1	100.10	3.040	0.00 1	

Does this list of source ASNs make sense? (2)

- Common sense
- Looking glass
- Tools like bgp.he.net or Kentiks KMI can help

celine (Kar-Tel Kazak	AS21299	View in Network Explorer		
Overview Rankings Mar	kets Customers & Providers Peers	š		
IP Address Family IPv4 Global	et Comparison ASN 207063			
Providers	Customers	Customers List 23 total		
Global	Global	All Including Mutual All Including Single Ho		
	23	1 MBS-AS Kazakhstan AS15736 👻		
2		2 KARTEL-AS 2DAy Telcom Kazakhstan AS35566 🔻		
1		3 CITICOM AS200962 -		
	0	4 PSKZ-AST AS39318 -		
Beeline (Kar-Tel My Network AS21299 AS207063	Beeline (Kar-Tel My Network AS21299 AS207063	5 Chevron AS7862 -		
Providers List 1 total		6 TECHNODOM-AS AS62394 -		
All Including Mutual	Q Filter Providers	7 SLS (Schlumberger) AS72 -		
1 TNS Plus AS35168 -		8 EDB-AS AS60186 V		
		9 THA-AS AS51340 -		
		10 BANKNET-AS AS48007 -		
		11 000 40 4042001 -		

Now the fun begins — contacting customers!

- Service providers could simply refer the traffic to the abuse team to take action (e.g. disconnect).
- Customer would just continue activity with another provider.
- A service provider's objective should be to get the customer's netops team to understand the issue and address it.

A very time-consuming process:

- 1. Language barriers
- Network engineers who are either overworked or poorly trained
- Unfortunately, networking teams who are simply uninterested in fixing the problem
- Other reasons...

Anti-Spoofing Reflection / Amplification Peer Response BINGO

That's n our IP		Okay, we blocked those UDP ports on the customer	Misinterprets the data and claims you sent it	Our routers can't do ACLs or uRPF	Asks what destination IPs are being attacked
NetFlow t screenst looking desination	not for	We only have NetFlow on our internet edge	l can't find the traffic	We're a transit provider; we can't do this	Shares link to an internal tool I can't access
Due to priv we don collect NetFlow o	't t	Insults	FREE	Those IPs you reported are yours	We notified the customer
"show rou output of IP in ques	the	Using the wrong timezone	cc's 15 other people on the email thread who can't help	Customer is multi-homed; can't BCP38	Includes novice security team on thread
We put policer limit the	to	We don't know what server generated this	No response from peer	We don't have NetFlow	Promotes buying DDoS protection service

Source: a certain cat at a cloud provider

Call to action

If your network is allowing spoofed traffic, someone is probably using your infrastructure to launch DDoS attacks against victims around the world.

If you run a network that operates as a service provider, you have a responsibility to the rest of the Internet to actively look for and eliminate spoofed traffic. If contacted, you need tools in place to investigate and address the claims Don't want to be the one to complete someone's **antispoofing response bingo card**.

Thank you!

Your name nina@kentik.com

@nissen333
 in/ninabargisen

<u>oin Kentik on Slack</u>