
Building AI Network Fabrics
Peter Lundqvist

peter@arista.com

Agenda
• AI Basics
• Deep Learning
• Networking requirements

• Architectures for AI Network Fabrics

2

Let’s begin with a definition

Artificial Intelligence

https://plato.stanford.edu/entries/artificial-intelligence/#StroVersWeakAI

“Artificial intelligence (AI) is the
intelligence of machines or software, as
opposed to the intelligence of humans
or animals”
https://en.wikipedia.org/wiki/Artificial_intelligence

“Artificial Intelligence (AI) refers to
the simulation of human intelligence in
machines, allowing them to perform
tasks that typically require human
intelligence”
ChatGPT3

https://plato.stanford.edu/entries/artificial-intelligence/

“Classical” machine learning

Classification

Machine Learning Complexity

Artificial Intelligence

Machine Learning Features
extraction

input

Blue/Red
/Green

Car

output

“color”
of car

“Classical” machine learning

Classification

Deep Learning Complexity

Artificial Intelligence

Machine Learning Features
extraction

input

Blue/Red
/Green

Car

output

Neurals Net

Deep
Learning

Deep learning

Classification

All parameters of
a car (color, size,

model …)

Features
extraction

input

Model, color,
dimensions …

output

“color”
of car

Agenda
• AI Basics
• Deep Learning
• Networking requirements

• Architectures for AI Network Fabrics

6

AI pipeline with Deep Learning

Calculate prediction with function: f(X) Calculate Loss

Repeat until Loss is “acceptable”

Forward pass

Backward pass

Search optimal parameters of f Update parameters of f

Training
Set

(Input,
Outputs)

The most important part when training a model is find the
correct weights of your input…
=> What data to pay most attention to…

Trained
Model

Compute-Network intensive

Compute-Network intensive

Back to Maths… Derivate and Gradient Descent

8

Gradient Descent

Derivative of a function

In neural networks:
The backward-pass is computing
and updating the weights with the
gradient descent method

Gradient Descent - Find the parameters
The previous graph was just a function of loss
for one parameter
• Introduce just one more parameter you get a 3-

dimensional graph like this, on which you apply
the gradient descent algorithms to find the local
minimums

Real world models use billions or even trillion of
input data points using 1000+ GPUs
• ChatGPT3 uses 96 layers and is trained on input

dataset of 175 billion parameters
• ChatGTP4 uses a trillion parameters latest version
• Llama2 2 trillion parameters

This is a sample of the
outcome from good
training…

“The harder i
practice, the
luckier i get”

+

Neural Networking Operations
• AllReduce : Collect elements from all

nodes, apply a reduction operator (e.g.
sum), then distribute reduction to all nodes

• AllGather : Collect elements from all
nodes and distribute them to all other
nodes

Many operational ways are used during model training
• ALLReduce, ALLGather, All-To-All…

Node1
Local gradient

Node2
Local gradient

Node3
Loacal gradient

Node1
Gradient sum

Node2
Gradient sum

Node3
Gradient sum

Node1

Node2

Node3

Node1

Node2

Node3

How to distribute the gradient descent calculation?

Database :
GBs input

data

gradients

parameters

SINGLE- GPU

Local gradients

parameters

Local gradients

parameters

Local gradients

parameters

Local gradients

parameters

Database :
GBs input

data

Summarize gradients across GPUs (network “API” – “All_Reduce”)
gradients gradients gradients gradients

MULTI-GPU

Data parallelism allows feeding different GPUs with different parts of the data
and process the data in parallel
• After each GPU processed its data, it shares the result with all the other GPUs

That thing with “GPU” vs. CPU and AI Workloads

Agenda
• AI Basics
• Deep Learning
• Networking requirements

• Architectures for AI Network Fabrics

15

Now to Networking for AI: What do you need ?

A fast, lossless network
• Graceful handling of large/bursty synchronized flows
• Fast and reliable transfer from host to network

(RDMA)

A network with consistent latency
• Tail latency is likely to impact job completion time

significantly

A network without collision
• Distribute equally low-entropy flows along all physical

paths

Visibility and telemetry
• To identify bottlenecks in the network or application

RDMA (Remote Direct Memory Access)

• Most Al network traffic is GPU-to-GPU
• Normally network packets are written to

kernel buffers and then copied by the CPU
to application's buffers

• The CPU becomes a major bottleneck
• RDMA allows applications to directly read

or write to another system's GPU memory,
avoiding the OS network stack and any
CPU processing RDMA uses Queue Pairs (QPs) that

are mapped to user-space memory
regions. The NIC reads/writes directly
to/from these regions.

UDP
Header

IB PayloadIB GRH

RDMA Over Converged Ethernet (RoCE)
• Network protocol that allows RDMA over an Ethernet network
• The second version (RoCEv2) enhances the protocol with UDP/IP header

⁃ Operations on routed ethernet networks: default setup large datacenters
⁃ IP QoS : DSCP or alternatively COS/VLAN PRI
⁃ IP congestion control : the Explicit Congestion Notification (ECN) signal

Eth L2
Header

Et
he

rty
pe IB BTH+

(L4 Header) iCRC FCSEthertype
0x8915

IB PayloadIP
Header

Eth L2
Header

IB BTH+
(L4 Header) iCRC FCS

Et
he

rty
pe

Pr
ot
oc

ol
#

D
Po

rt#

RoCEv1

4791

RoCEv2
20B 8B 12B

12B

Ethertype
0x0800

254

Flow collision and traffic polarization

A C B X Y ZA A

ideal (lucky) routing/forwarding

A C B X Y ZA A

(unlucky) flow collision

Large flows could be polarized on the same links …

• Load balancing in IP routing based on “ECMP” 5-tuple etc…
⁃ Basically it is a Hash of fields in packet header

• Sadly AI clusters don’t drive a significant distribution of parameters
⁃ Low level of entropy

⁃ ECMP optimization

⁃ Flows are allocated to new links based on current utilization,
significantly increasing hash performance/efficiency

⁃ Continuous reevaluation of best links with flows rebalancing

⁃ Relies on sufficient level of entropy in the packet headers
⁃ Flows are consistently mapped to uplinks

How to avoid collision / traffic polarization ?

• ECMP hashing : limited efficiency, especially with less entropy

Input fields for ECMP

• Dynamic Load Balancing (DLB): Smart flow distribution based on link utilization

UDP
Header IB PayloadIP

Header
Eth L2
Header

IB BTH+
(L4 Header) iCRC FCS

Et
he

rty
pe

Pr
ot
oc

ol
#

D
Po

rt#

Efficiency

TOR layer

Spine layer

rack-1

LBN - Load balancing “stitching” for AI workloads

GPU1 GPU2

rack-2
GPU1 GPU2

rack-n
GPU1 GPU2

Load Balancing Number (LBN) approach in brief GPUx <> GPUx, GPUy <> GPUy etc…
● Load Balancing Number assigned on each ingress interface to be the main input for hashing
● All traffic arriving on an ingress interface is effectively mapped to an egress interface between TOR

& Spine

28x 400GbE to
xPUs

AI-leaf

36x 400GbE to
Spine

1 2 43 65

1 2 43 65

Next challenge: Incast
Many-to-1 type of traffic
• Typical in HPC environment
• Very aggressive in AI/ML

environment (much more flows)
• You can’t be saved by TCP, since

the typical AI flow UDP based
Consequences
• Slow&Drops
• Worst case failed training session
• Highly spend $ for nothing

Incast problem: Mitigation
• Add notification mechanism to signal pressure along path and reduce quantity of traffic

at the source, Pause frames (L2) and ECN (L3)
• Deep buffering in order to reduce the networking pressure

⁃ Could increase the latency because you will have to “drain” the buffer

Deep Buffers

…

(hop-by-hop) (end-to-end)
PAUSE Congestion Notification

Buffers usage Buffers usage Buffers usage

IP packet IP packetECNECN

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

1 Version IHL ToS (DSCP/ECN) Total Length

2 Identification Flags Fragment Offset

3 TTL Protocol Header Checksum

4 Source Address

5 Destination Address

6 Options Paddings

0 1 2 3 4 5 6 7

CS AF ECN

00 : Non-ECT
01 : ECT(1)
10 : ECT(0)
11 : CE

CS = Class Selector [CS0 to CS7]
AF = Assured Forwarding
ECN = Explicit Congestion Notification

The lost last bits of the DSCP header = ECN

24

[3] CE set

ECN - Operations

• ECN is negotiated between sender and receiver
that are able to “understand” ECN marking

• ECN marking is happening in egress and start
when the average queue size is above a
configurable threshold

25

ECN enabled switch ECN enabled switch ECN enabled switch

ECN enabled
sender

ECN enabled
receiver

[1] ECN negotiated during connection establishment

[2] ECN negotiated during
connection establishment

[4] Receiver echoes congestion experienced to sender

What can buffers solve ?
“RDMA” Incast

⁃ Incast is a many-to-one problem
⁃ A single host request can generate

simultaneous responses from many nodes
creating a microburst that overwhelms a single
port

200G port
1s interval

Inter-packet gap
0.24ns

Buffer

400G port
1s interval

OK

OK OK

Inter-packet gap
0.48ns

Speed Mismatch
⁃ Mix of different ports speeds is common

⁃ Speed mismatch can lead to buffer
exhaustion, especially at the leaf layer

Congestion

Same old truth… buffering capability always good !

Agenda
• AI Basics
• Deep Learning
• Networking requirements

• Architectures for AI Network Fabrics

27

AI Fabric

AI Fabric

400GbE access ports
No oversubscription
Optimized flow distribution
Lossless
Advanced Telemetry

Key requirements

Total # of AI NIC ports
NIC SerDes Speed
Rack physical layout and
fiber plant
Cost

Key Variables

Single-tiered AI Fabric

GPU system

8x 400GbE

GPU system

8x 400GbE

GPU system

8x 400GbE

GPU system

8x 400GbE

…

…

…
Multi-tiered AI Fabric

GPU system GPU system

8x 400GbE 8x 400GbE

…
GPU system GPU system

8x 400GbE 8x 400GbE

…
GPU system GPU system

8x 400GbE 8x 400GbE

…

Small and Moderate AI applications (10s and 100s of xPUs)

Large AI applications (1000s of xPUs)

Single-Tiered Pizza Box

GPU systems

Nx 8x 400GbE

Rack #1 Mid-of-row

Small AI applications
Up to 64 xPUs at 400Gbps

GPU systems

Nx 8x 400GbE

Rack #2

GPU systems

Nx 8x 400GbE

Rack #11

GPU systems

Nx 8x 400GbE

Rack #12

• Fixed Configuration Switch
⁃ 64x 400G
⁃ 32x 800G

• No flow collisions
⁃ Single-asic line-rate forwarding

• ECN and/or PFC to handle incasts
⁃ If Low buffers - Requires tuning

32 port 800G* (2x400G) OSFP or QSFP-DD 64 port 400G QSFP-DD

Single-Tiered Chassi

GPU systems

Nx 8x 400GbE

Rack #1 Mid-of-row

Moderate AI applications
Up to 576 xPUs at 400Gbps

GPU systems

Nx 8x 400GbE

Rack #2

GPU systems

Nx 8x 400GbE

Rack #11

GPU systems

Nx 8x 400GbE

Rack #12

• Modular chassis offering high port density
• No flow collisions between line card and fabric

• Cell-based Fabric
• Built in overprovisioning between fabric

and linecard
• 100% Fair and Efficient Load Balancing

within the chassis
• High Availability

• Fabric, fan, power supply etc…
redundancy

• ECN and/or PFC to handle incasts

• Deep buffers - Requires minimal tuning
4 slots

Up to 144x 400GbE

8 slots
Up to 288x 400GbE

12 slots
Up to 432x 400GbE

16 slots
Up to 576x 400GbE

Questions/Corrections/Bashing ?

31

