

Around the World with NTS deployment and usage

Christer Weinigel, Netnod 2023-03-15

Start with NTP

- Network Time Protocol
- <u>The protocol</u> for distribution of time over the internet
- Has been around for a long time
 - Created by David Mills in 1980, RFC 958 in 1985
 - Latest version is NTP version 4, RFC 5905, from 2010
- Very good timing accuracy
- Multiple implementations

Netnod and NTP

- Netnod have been doing NTP since 2013
- Multiple nodes with redundant hardware
 - 2x caesium clocks
 - 2x time distribution
 - NTP in a FPGA, multiple 10Gbit/s ports at wire speed
 - Battery backup for everything
 - Traceable to UTC(SP) and UTC

Netnod's NTP nodes

- Six nodes throughout Sweden
 - Luleå
 - Sundsvall
 - Stockholm x2
 - Gothenburg
 - Malmö/Copenhagen

Issues with NTP

No security

- Plain text, vulnerable to man in the middle attacks
- Time is important
 - TLS, HTTPS, SMTPS, IMAPS, POP3S
 - DNSSEC
- Actually: no scalable security
 - Authentication using a shared secret and MD5/SHA1
 - Limited number of shared keys (16 bits)
 - Key distribution is hard
 - Autokey never caught on

What is NTS?

- NTP with security
 - Adds authentication and encryption to NTP
 - Scales to an unlimited number of clients
 - Netnod got involved in IETF draft process during 2018
 - Published as RFC 8915 in September 2020

NTS phases

- Key establishment, NTS-KE
 - TLS using same infrastructure as HTTPS
 - Server creates cookies which are stored on the client
- Timestamping, NTS-TS (not an official abbreviation)
 - NTP with extension fields
 - Stateless server using cookies from client

NTS implementations

- Implementations in C, C++, Go, Python, Rust
- NTPsec
- Chrony
- Netnod does NTS
 - Custom NTS-KE server
 - Custom NTS-TS in an FPGA
 - 10Gbit/s port at wire speed

NTP and NTS References

- NTS white papers
 - How does NTS work and why is it important?
 - How we developed the world's first hardware implementation of Network Time Security
- NTS proposed standard (RFC 8915)
- Best practice for connecting to NTP servers
- How to set up an NTS client
- List of Netnod time services

Movie about NTS usage

- Movie showing NTS-KE usage
 - Netnod's NTS servers are in Stockholm
 - Coloured dots show clients
 - Netnod turned on new servers in february 2022

Netnod NTS-KE

Christer Weinigel, Netnod AB Heatmap produced with Datashader Geo-IP provided by DB-IP (CC BY 4.0)

2022-02-23 18:00 UTC 838 hits per hour

Actions

- Increase NTS-KE server performance
 - Throw more hardware at the problem
 - Add more CPU and memory
 - Shorter timeouts, less logging, better threading
 - Kernel optimisation, interrupts, buffers
- Load balancing within a node
- More nodes
 - Added Gothenburg, Malmö, Sundsvall earlier than planned
 - Luleå will soon be up too

Conclusion

- Had to eat my own words
 - "Load won't be a problem, only enthusiasts will use NTS for some time"
- I'm personally very happy
 - NTS is actually being used
 - Increases security and robustness of the internet
- Feel free to contact me if you have any questions
 - Christer Weinigel <<u>wingel@netnod.se</u>>

Thanks for listening!

Д

Visit ut at netnod.se