Lessons learned
Hundreds of millions routes in OpenBGPD

Claudio Jeker
RSSF

Why does this matter?

Running large scale routers highlights scalability issues and helps to fix them
before others hit them

Improving BGP performance not only benefits the biggest machines,
everyone else benefits as well

It also helps to reduce latency under heavy load

Good validation for OpenBGPD as a previous version of the looking glass failed
to handle the load

The Hardware

VM running Ubuntu 22.04 LTS
CPU: 4 x AMD EPYC Processor @ 2.8GHz

Memory: 125GB total, currently 74GB used

My largest OpenBGPD setup

Pv4: 115 peers up, 27 down, 88,219,041 prefixes received
Pvo: 104 peers up, 38 down, 14,867,571 prefixes received

RDE memory statistics

412,201,131 prefix entries using 49.1GB
32,130,792 BGP path attribute entries using 2.4GB
32,130,792 BGP AS-PATH attribute entries using 100/MB
2,257,071 entries for 32,376,786 BGP communities using 737MB
RIB using 52.7GB of memory

What did | see?

It takes a long time from startup to steady state
CPU usage of RDE process is at 100% for hours
Firehose feeds are almost unable to catch up with input

Some looking glass queries take very long to complete

The problem definition

Ingest as many full feeds as possible Not a problem, design of

Keep the sessions alive, even during OpenBGPD ensures that v
R keep-alive messages are sent

Converge in reasonable time and keep
up with the incoming updates Unclear reason for the sluggish

performance. This needs 1
Provide a few firehose feeds using BGP jnvestigation!
add-path
Provide quick queries of the RIB for the Most queries OK, only some :

looking glass take too long

Low hanging fruit

Problem: Some looking glass
queries did full table walks even
though not needed.

Solution: Implement subtree walks
and simple lookup loop to walk only
a small part of the tree.

Benefit: Looking glass queries faster

Problem: Various hash tables did not
scale to large number of elements.
As a result many lookups were slow.

Solution: Replaced hash tables with
a balanced binary lookup tree. In
one case remove lookup in favor of
an additional copy.

Benefit: Internal lookups faster

Profile don't speculate

| used perf utility from linux to generate flame graphs:

e Stack traces collected using 99 samples per second for 300 second of
runtime
e [lame graphs show statistical distribution of samples (stack traces)

e [lame graph does not show if a function takes a lot of time or is frequently

called

What is a flame graph

Shows path to currently running function (bottom to top), color does not matter.
ne longer a bar i1s the more time Is spent in that function.

Input processing - 60% time spent in pathid_assign

Code before - lots of work for something trivial

pathid_assign(struct rde_peer *peer, ...)
{
/* Assign a send side path_id to all paths. */ | |
re = rib_get(rib_byid(RIB_ADJ_IN), prefix, < First lookup route in the RIB
prefixlen);
if (re != NULL) Then locate the prefix of this
p = prefix_bypeer(re, peer, path_id); < peer if it exists.
if (p !'= NULL)
path_id_tx = p->path_id_tx; - If it exists reuse that pathid
else {
do { Else find new pathid by
/* assign new local path_id */ starting with a random one
path_id_tx = arc4random() ; | | |
} while (pathid_conflict(re, path_id_tx)); Check if there is a conflict
} which calls prefix_bypeer()

return path_id_tx; again

Code after - using precomputed value

pathid_assign(struct rde_peer *peer, ...)

{

/* If peer has no add-path use the
* per peer path_id */
if (!peer_has_add_path(peer, prefix-=>aid,
CAPA_AP_RECV))

return peer->path_id_tx; -

/* peer uses add-path, therefore per path
path_id needs to be assigned */

/* more or less the old code follows */

Check if peer is not using
add-path.

Use precalculated path_id
since the peer can only send

a single path

Peers using add-path receive
still need to use the old more
costly algorithm.

pathid_assign() fixed

prefix_bypeer() is still an issue

now In prefix_get() called by prefix_update()

Sending updates 1s too expensive

60% time spent in up_generate_addpath

Sending updates 1s too expensive

Problem: up_generate_addpath() is complex
The function re-evaluates all prefixes every time
For “add-path all” this is extra unnecessary work

Solution: Introduce up_generate_addpath_all() that is optimized for
“add-path all” and just adds or removes the changed prefix

Less time spent generating updates

Various lookup functions still a problem

prefix_get() with prefix_bypeer() most prominent one

Future work

Problem: prefix_get() and prefix_bypeer() are still slow

Solution: Redesign part of the RIB ‘database’ model to reduce lookups

Problem: Lookup functions slow because of CPU cache misses

Solution: Replace binary trees with a more cache friendly lookup function

but first verify that this is actually the case. &

Conclusion

After solving some scalability issues the system is up and running effectively
Initial total convergence time is below 90 minutes

Sessions are up and stable

Even possible to frequently update the ROA tables and show the origin
validation state in the looking glass

Thanks

NetNod for inviting me to this event
Siri Brenden for all the support

Job Snijders and NLnog to let me play with the looking glass machine

Questions?

