Kentik. Are we turning a corner on BGP security?

Nina Bargisen, <u>nina@kentik.com</u>, Kentik

Where are we with RPKI ROV adoption?

- Presently stands as the Internet's best defense against BGP hijacks due to typos or other BGP mishaps.
- Core challenge: broad deployment requires many individual actions.
 - Why reject RPKI-invalids if no one is creating ROAs?
 - Why create ROAs if no one is rejecting RPKI-invalids?

Where are we with RPKI ROV adoption?

- Enormous progress in recent years as Tier-1 NSPs agreed to reject RPKI-Invalids.
 - NTT, GTT, Arelion (Telia), Cogent, Telstra, PCCW, Lumen, and more!
- According to NIST RPKI Monitor, the trend line is going in the right direction!

https://rpki-monitor.antd.nist.gov

Measuring RPKI deployment progress

• It takes two steps to reject an RPKI-Invalid BGP route.

https://stats.labs.apnic.net/roas

Measuring RPKI deployment progress

• We have two questions we want to answer.

Where are we with ROA creation?

• NIST RPKI Monitor reports that only 34.1% of IPv4 BGP routes are presently signed. *

*32.6% of IPv6 routes are RPKI-Valid

Kentik's perspective can deepen understanding of RPKI

- Kentik has over 300 customers and almost half have opted-in to the use of their data as part of aggregate analysis.
 - Note: analysis is subject to biases of the customer set which includes (NSPs, CDNs and enterprises) and is skewed toward the US.
- Kentik's NetFlow analytics platform annotates flow records with an RPKI evaluation of route of destination IP upon intake.
 - Originally built to understand how much traffic would be lost by dropping invalids.
 - Can also be used to understand RPKI from a traffic-volume perspective.

😑 Data Sources	~
a All Data Sources	
✓ Edit Data Sources	
Dimensions	~
Destination RPKI Quick Status	×
✓ Edit Dimensions	
Ø Metrics	~
bits/s	~
✓ Customize Metrics	
() Time	~
Lookback From To	From + To
Show The	
Last 3 Days	~
UTC V C	\rightarrow
▼ Filtering	~
Include all Destination Country equals United State	×
✓ Edit Filters	

What proportion of traffic goes to signed routes?

- Kentik tracks four cases of RPKI outcome.
 - 1. Valid
 - 2. Unknown
 - 3. Invalid
 - 4. Invalid but covered by valid/unknown

Note #4 only exists in the analysis-plane and is not part of IETF/BGP/Routing!

Example of #4:

IP Info Whois DNS RBL					
24.38.10.48 (1826a30.cst.lightpath.net)					
	Announced By				
Origin AS	Announcer	ment	Description		
AS6128	24.38.0.0/17	9	Cablevision Systems Corp.		
AS33759	24.38.10.0/24	S 🗸	Regeneron (C03272042)		
Address has 0 hosts associated with it.					

Only ~1/3 of BGP routes have ROAs - but how much traffic?

Period of analysis: 22 Arp 2022 00:00 UTC to 29 Apr 2022 00:00 UTC (7 days) Main Observations*

- 0.1% of traffic volume is 'Invalid but covering'
- 41.0% is Unknown
- 58.0% is Valid
- 0. 1% is Invalid

Traffic to invalid routes is infinitesimal.

• <u>Not</u> a reason to <u>not</u> drop invalids.

Comparing metrics for ROA creation by country

RIPEstat reports % of IP address space

https://stat.ripe.net/app/launchpad/

For example, how is the US doing with ROA creation?

United States	Major RPKI deployments	Valid %*
↑ v ^{my}	 Eyeball networks 	
	 Comcast (AS7922) 	99.7%
60.4% of bits/sec (NetFlow)*	 Spectrum (AS20115) 	99.9%
	 Content providers 	
	• Amazon (AS16509)	100%
	 Google (AS15169) 	100%
 24.2% of IPv4 space (RIPEstat) 20.1% of IPv6 space 	 Cloudflare (AS13335) 	93.3%
	Maybe not a majority of BGP ro companies account for a lot of	utes, but these f US traffic!

*Combined IPv4 + IPv6

Many countries are doing better than earlier stats suggest

- Malaysia doing very well with RPKI ROA deployment!
- 92% traffic is RPKI-valid according to Kentik's aggregate NetFlow data.
- Biggest valid destinations
 - **1.** AS4788
 - **2.** AS9534
 - **3.** AS9930
- Great job Malaysia!

Question: How much traffic goes to routes with valid ROAs? Answer: Most of it!

Question: How much does RPKI reduce propagation of invalids? Answer: Let's find out...

RPKI ROV & propagation of invalids

- On the right is a histogram of the number of IPv4 and IPv6 prefixes seen by count of vantage points.
- The count of vantage points can serve as a measure of route's propagation — the more vantage points, the more propagation.
- Peaks of globally routed prefixes (those seen by nearly all vantage points)
 - 295 for IPv4
 - 240 for IPv6*

* the lower number reflects the smaller number of IPv6 vantage points in the Routeviews dataset.

RPKI=invalid routes propagate far less than other types.

Example routes which change state from valid to invalid

- These errors occur when a network engineer attempts to prepend an AS three times, for example, but instead ends up prepending the number 3 to the AS path.
- AS210974 changed how it announced 212.192.2.0/24 on August 4, 2022.
- It began prepending the number 3 to its AS path, however since there was a ROA for this prefix, it also caused the route to become invalid leading to a significant drop in propagation.

In Summary

Question: How much traffic goes to routes with valid ROAs? Answer: Most of it!

Question: How much does RPKI reduce propagation of invalids?

Answer: Evaluation of a route as RPKI-invalid reduces its propagation by 1/2 to 2/3.

Best Current Practice – Reject RPKI-Invalid BGP routes!

Rejecting RPKI-Invalid routes on EBGP sessions...

- 1. Protects a majority of your outbound traffic from BGP hijacks due to typos, BGP mishaps.
- 2. Not a risk to legitimate traffic.

Other BCPs include:

- 1. Do NOT modify LOCAL_PREF based on validation states
- 2. Do NOT set / remove BGP communities based on validation states

Security issues like CVE-2021-41531 / CVE-2021-3761 are examples of how not following the above BCP could result in massive BGP churn!

https://bgpfilterguide.nlnog.net/guides/reject_invalids/