
NTS in a FPGA

Christer Weinigel <wingel@netnod.se> April 7 , 2022

mailto:wingel@netnod.se

Who am I?

• Christer Weinigel <christer@weinigel.se>
• Freelance contractor working for Netnod

• Software developer dabbling in hardware

• Knows enough about FPGAs to be dangerous

• Actual FPGA development done by Assured AB

Netnod Time & Frequency

• Clock nodes
• 6 nodes (gbg, lul, mmo, 2x sth, svl)

• Gothenburg, Luleå, Malmö, 2x Stockholm, Sundsvall

• Redundancy within a node
• 2x caesium clock

• 2x measurement, microstepper, distribution amplifiers

• 2x time scales realized as 10MHz and PPS

• 2x NTP servers

• and some more

Netnod Time & Frequency (2)

• GNSS for synchronisation of time scales
• Within 20 ns of UTC(SP)

• NTP and NTS
• Free service over the internet

• Accurate to about +/-10 ms depending on distance

• Can be much better if there are only a few hops to the server

• PTP grandmasters
• For customers needing more accurate time

• For best accuracy use a dedicated connection

What is NTP?

• NTP - Network Time Protocol
• The protocol for time exchange over the internet

• One of the oldest application protocols on the internet
• In use since 1985

• No security (most of the time)

• Authentication
• MD5 and SHA hash algorithms

• Shared secrets

• Does not scale to internet sizes

• No other practical security (autokey is not good enough)

What is NTS?

• NTS - NTP with Security
• Adds authentication and encryption

• NTP with scalable security

• Similar to how HTTPS adds security to HTTP

• Netnod have been participating in development of NTS
• IETF draft and RFC process (2018 and onwards)

• IETF hackathon (proof of concept implementation 2019)

• NTS accepted as RFC8915 (September 2020)

What is an FPGA?

• Programmable hardware
• Not as efficient as a real ASIC, but often good enough

• Lookup tables, lots of them
• A few thousands to millions

• Can implement logic gates: AND, OR, NOT

• Registers in a soft CPU

• Can do many things in parallel

• This is plain old NTP without any security
• Stateless UDP

• Only 48 bytes of payload

• Ethernet frame, IP frame, normal checksums

• Fixed position fields in payload

NTP packet

• Optional signature with MD5, SHA
• Adds about 20 bytes to payload

• Requires a shared secret for each client

• Limited number of secrets

• Does not scale to internet sizes

NTP authentication

• FPGA implementation is fairly simple
• Verify checksum and request

• Fill in metadata and timestamps

• Swap source/destination

• Calculate checksum

NTP FPGA implementation

Payload as displayed in previous slides:
Mode client/server, Leap second,
Estimated precision, Received
timestamp, Transceive timestamp etc

NTP FPGA at Netnod

• In production at Netnod since 2016

• Handles 4x 10Gbit NTP traffic
• On a Xilinx VC709 reference board with about 690 000 LCs

• Reference board inside a rack mounted PC
• Power and control

NTP FPGA architecture

NTP Clock
Select

10GE RX 10GE TX

NTP Clock B

PCI Express AXI-slave
config/status

NTP Clock A

PCIe

SFP+

10MHz

PPS

10MHz

PPS

SFP+

MD5 Engine SHA1 Engine

NTP Engine (Packet Processor)

Key points for NTP FPGA
• Streaming architecture

• Runs at wire speed (4x 10Gbit)

• No buffering

• No reordering

• Predictable latency
• +/-10ns

• Large MD5 and SHA1 implementations to be able to keep up

• The bad
• Does not support NTS

• No scalable security

NTS architecture

• Adds authentication and encryption
• Two stages

• NTS-KE Key Establishment
• Using TLS infrastructure

• Same certificates as HTTPS

• Handled by a PC

• NTS-TS Timestamping
• NTP with extensions

• Stateless

• NTS cookies

NTS cookie
• During NTS-KE the server and client agree on C2S and S2C keys

• Server places keys in 8 encrypted cookies
• Hands all cookies to the client

• Client stores keys and cookies

• TLS with normal HTTPS certificates

NTS-KE Key Establishment

NTS-TS Timestamping request
• NTP request is the same as for normal NTP
• Extensions for NTS

• variable size, order, and count

Server decrypts NTS cookie
• Server can extract C2S and S2C keys from cookie

• Use C2S key to validate request
• Use S2C key to encrypt and sign response

NTS-TS Timestamping response
• NTP response is the same as for normal NTP
• Extensions for NTS

• Variable size, order, and count

NTS-TS Timestamping

NTS FPGA implementation

• Netnod have run NTS servers since 2019
• On a PC

• NTS-TS timestamping can be done in a FPGA
• NTS is more complex than NTP though

• AES-SIV (AES Synthetic Initialisation Vector)
• Authenticated Encryption with Associated Data (AEAD)

• Requires multiple passes over data

• A streaming implementation is hard

• Buffering is needed

• Many small NTS engines working in parallel

NTS FPGA architecture

NTP Clock
Select

10GE TXDispatcher Extractor

NTS Engine 0

NTS Engine 1

NTS Engine N

Mini Engine 0

Mini Engine N
NTP Clock B

PCI Express AXI-slave
config/status

NTP Clock A

PCIe

10MHz

PPS

10MHz

PPS

10GE RXSFP+ SFP+

Key points for new NTS FPGA

• Developed on a same VC709 reference board as NTP
• Fits 16 NTS engines

• Can handle 3Gbit of traffic

• Switched to a larger FPGA
• Xilinx VCU118 reference board with about 2.4 million LCs

• Fits 40+ NTS engines

• Handles 10Gbit of traffic

• Production code runs on an Arista 7130L
• Similar FPGA to VCU118

• Standalone, 1U, redundant power supplies

• 40 engines (colored)
• 2.2% each - 88% of total FPGA usage

• 10GE PHY
• 0.7% of total FPGA usage

• PCIe
• 3.3% of total FPGA usage

• Dispatcher
• 3.1% of CLBs, only 1.1% of CLB LUTs or

0.3% of CLB Regs
• Spread out all over FPGA

• Extractor
• 15% of CLBs, only 11% of CLB Regs or

3% of CLB LUTs. Sparse.

FPGA utilisation

PCIe

NTS
Engine

10GE PHY

Extractor

NTS FPGA retrospective

• Latency not as predictable as for NTP
• Engines buffer data

• Reordering of packets

• Complex dispatcher and extractor

• Adds a few microseconds of jitter

• Doesn't matter
• The first router will add tens of microseconds of jitter

• A few internet hops adds hundreds of microseconds of jitter

• Same is true for NTP so the extra jitter for NTS is insignificant

NTS FPGA improvements

• Many engines cause some issues
• Complex dispatcher and extractor

• Possible optimisations?
• Each engine is fairly small and slow

• Better to have fewer and slightly larger but faster engines?

• Can simplify dispatcher and extractor

NTS FPGA summary

• NTS FPGA works fine
• Handles 10Gbit and in production on Arista 7130L

• Follows standards
• Works with NTPsec and Chrony (available in Debian 11 bullseye)

• Some room for improvement

Questions?

• Netnod Time & Frequency
https://www.netnod.se/time-and-frequency

• Netnod NTS White papers
https://www.netnod.se/time-and-frequency/white-paper-how-does-nts-work-and-why-is-it-important

https://www.netnod.se/netnod-white-paper-on-the-worlds-first-nts-hardware-implementation

• VC709/VCU118/Arista code published on github (BSD license)
https://github.com/Netnod/FPGA_NTP_SERVER

• Production NTS servers
sth1.nts.netnod.se, sth2.nts.netnod.se

• I'm Christer Weinigel <wingel@netnod.se>
Feel free to mail me if you come up with any questions later

https://www.netnod.se/time-and-frequency
https://www.netnod.se/time-and-frequency/white-paper-how-does-nts-work-and-why-is-it-important
https://www.netnod.se/netnod-white-paper-on-the-worlds-first-nts-hardware-implementation
https://github.com/Netnod/FPGA_NTP_SERVER
mailto:wingel@netnod.se

netnod.se

Bonus slides

• Lookup table (LUT) for AND gate
• All equivalent

What is an FPGA (2)

IN A IN B OUT

0 0 0

0 1 0

1 0 0

1 1 1

IN A

IN B

OUT

IN A

IN B
OUT

IN A

IN B
OUT&

What is an FPGA (3)

• Combine LUTs with registers for more complex logic

Source: Wikimedia commons https://en.wikipedia.org/wiki/File:FPGA_cell_example.png

https://en.wikipedia.org/wiki/File:FPGA_cell_example.png

Arista 7130L implementation

Front panel PPS

OCXO

48 port
L1 Switch

Front panel
48x SFP+

NTP Clock A

NTP Clock B

10GE RX/TX

Arista tscore

FPGA
Switch

• Intel Atom CPU

• Front panel 10GE ports connected
to L1 switch

• Front panel PPS input

• Internal OCXO delivers
10MHz and PPS to FPGA

• Same core NTS FPGA code

• Arista "tscore"

• Arista CLI

Intel Atom
CPUPCIeNTS

• Same same but different
• L1 switch must be configured
• Uses internal OCXO instead of external 10MHz clock

• Arista "tscore" handles synchronisation of OCXO to front panel
PPS input

• FPGA configuration using Arista MOS CLI
• Extensions written in Python

Key points for Arista implementation

