
A Review of CloudFlare
DNS Development and Deployment

Martin J. Levy @ CloudFlare
(based on work by Filippo Valsorda, Jono Bergquist & Ólafur Guðmundsson)

DNSSEC

Introduction

2

CloudFlare DNS (the background)
•  How big?

•  2+ million domains

•  Authoritative for 40% of Alexa top 1 million

•  43+ billion DNS queries/day

•  Second to only Verisign

•  63+ Anycast datacenters globally

3

CloudFlare DNS offerings
•  DNS for customers

•  UI based access; heavily linked to CDN/DDoS services

•  DNS for partners

•  API based access; heavily linked to resold CDN/DDoS services

•  DNS as a secondary service (vDNS offering)

•  Operates as an authoritative NS for TLDs (or significant domains)

•  Looks like a classic secondary service

4

CloudFlare Goals & Solution
•  DNSSEC at web scale

•  Scalable // DNSSEC for entire CloudFlare customer base

•  Simple // make it easy to consume

•  DNSSEC shouldn’t be for power users only! It should be for everyone!

•  DNS & DNSSEC software structure for this large scale deployment

•  CloudFlare wrote our own DNSSEC systems (scale & speed dictated this)

•  CloudFlare uses modern crypto and sign-on-the-fly at the edge

5

CloudFlare Goals & Solution
•  Changing the rules in order to deploy DNSSEC at large scale

•  Modifying and extending existing protocols to automate registrar interactions

•  Necessary to enable ease of use and deployment

•  Documented in RFCs or drafts (and code provided on github)

•  CloudFlare operates as a third-party DNS operator

•  i.e. Do not exit is many registration models

•  We are not the registrar or registry for most of these zones

6

Scale

7

Why CloudFlare needs live signing
•  Lots (lots!) of small, light traffic zones

•  Heavily distributed network (45+ datacenters)

•  Dynamically generated records

•  Zone walking protection

8

Issues with live signing
•  Speed!

•  Negative answers

•  Key management

9

Constraints
Keep size small, and don’t require full zonefiles

Our solutions!

10

Speed

11

CloudFlare’s DNS(SEC) overview
•  RRDNS is our in-house DNS server written in Go

•  Resilient against attacks and abuse

•  No zonefiles, records are pulled from a global distributed database

•  Full featured (dynamic answers, CNAME flattening, …)

•  DNSSEC is just a “filter” applied to the answer

12

Solving speed (and size): ECDSA P-256
•  ECDSA (Elliptic Curve Digital Signature Algorithm) P-256 signatures

•  > 3x faster than RSA1024

•  Measured on OpenSSL 1.0.2 on our servers

•  We (Vlad Krasnov) ported OpenSSL ASM to Go

•  21x speedup for the sign: https://go-review.googlesource.com/#/c/8968/

•  Bonus: small signatures, small keys, modern crypto!

•  Supported by most validators, working on registrars

13

https://tools.ietf.org/html/rfc6605

Solving speed (and size): ECDSA P256

14

R
S

A
:

11
81

 B
Y

TE
S

E

C
D

S
A

:
30

5
B

Y
TE

S

…

Standard Go crypto:
 BenchmarkSingleSignECDSA 832,295 ns/op
 BenchmarkSingleSignRSA 6,003,261 ns/op

Go with Vlad’s changes:
 BenchmarkSingleSignECDSA 60,806 ns/op
 BenchmarkSingleSignRSA 3,124,274 ns/op

Solving speed (and size): ECDSA P256

15

https://blog.cloudflare.com/go-crypto-bridging-the-performance-gap/

Negative Answers

16

Solving negatives: “Black Lies”
•  To answer a NXDOMAIN normally we need:

•  Database lookups for previous and next name

•  2 or 3 signatures (NSEC/NSEC3) - slow and big!

•  Previous and next name disclosure

17

Solving negatives: “Black Lies”

18

Solving negatives: “Black Lies”
•  RFC 4470 introduces “white lies” for online signing:

•  Generate a NSEC on the name’s immediate predecessor, covering up to the
successor (RFC4471)

•  Same with the wildcard

•  Solves: zone walking, database lookups

•  Still, 2 signatures to say one thing :(

19

Solving negatives: “Black Lies”
•  Our solution: true lies. Just sign a NOERROR.

•  Place a NSEC on the name, cover until the successor, set only the NSEC and
RRSIG bits

20

Solving negatives: “Black Lies”

21

Solving negatives: “Black Lies”
•  1 signature op, no db lookup or zone walking

•  The entire answer fits 512 bytes (actually, < 400!)

•  End-user behavior is unchanged

22

Solving negatives: the “NSEC shotgun”
•  But. To answer a missing type on an existing name, we still need to query the

database for the NSEC bitmap

•  That’s not even always possible! (Dynamic answers)

23

filippo.io. 3600 IN NSEC \003.filippo.io. A NS SOA MX TXT AAAA RRSIG
NSEC DNSKEY

Solving negatives: the “NSEC shotgun”
•  Step back: what is a NSEC? A denial of existence.

•  “The types not in the bitmap don’t exist”

•  So, let’s make a “minimally covering” one.
By setting all possible bits in the bitmap!

24

filippo.io. 3600 IN NSEC \003.filippo.io. A NS SOA WKS HINFO MX TXT
AAAA LOC SRV CERT SSHFP IPSECKEY RRSIG NSEC DNSKEY TLSA HIP OPENPGPKEY
SPF

Solving negatives: the “NSEC shotgun”
•  Asked for TXT and there’s no TXT? Set all the other bits that might exist.

•  The NSEC is a valid denial for TXT, and is useless for an attacker that wants
to replay it for other queries.

25

filippo.io. 3600 IN NSEC \003.filippo.io. A NS SOA WKS HINFO MX TXT
AAAA LOC SRV CERT SSHFP IPSECKEY RRSIG NSEC DNSKEY TLSA HIP OPENPGPKEY
SPF

Key Management

26

Solving keys: centralized DNSKEY sets
•  It’s live-signing, you need the ZSK at the edge (for now)

•  Protect the KSK: keep it in a safe central auditable machine, distribute the
signed DNSKEY sets to edges

•  Short regular RRSIG validity, longer for DNSKEY

•  Prepared to roll the ZSK fast at any time

27

Solving keys: global ZSK and KSK
•  No reason to have millions of ZSKs and KSKs:

•  all would be used/stored/rolled together

•  Use a single KSK and a single ZSK with multiple names

28

filippo.io. 3600 IN DNSKEY 256 3 13 koPbw9wmYZ7ggcjnQ6ayHyhHaDNMYELKTqT
+qRGrZpWSccr/lBcrm10Z 1PuQHB3Azhii+sb0PYFkH1ruxLhe5g==

cloudflare-dnssec-auth.com. 3600 IN DNSKEY 256 3 13 koPbw9wmYZ7ggcjnQ6a
yHyhHaDNMYELKTqT+qRGrZpWSccr/lBcrm10Z 1PuQHB3Azhii+sb0PYFkH1ruxLhe5g==

“DS” – Simplify

29

How long does it take to ?
•  Post a new selfie on Facebook and all your friends to be notified

•  few seconds (this is INTERNET SPEED)

•  For a new domain to appear in the DNS?
•  less than 5 minutes in ICANN TLD’s, random in others

•  Move domain from one DNS operator to another?
•  long time limited by MAX(Parent NS TTL, Child NS TTL)

•  Transfer a domain from one registrar to another one?
•  1 sec … 5 days

•  DNSSEC key rollover
•  many DAYS (your-mileage-may-vary)

30

Recent example: HBOnow.com
•  Affected: Customers behind DNSSEC validating DNS resolvers

•  Blamed: Comcast and ISP’s for resolution failure i.e. blocking

•  Root cause: HBO for not checking the domain was DNSSEC bogus

•  Time to full recovery:
•  1 day to purge DS from all caches after HBO made a change in .com

registration system

•  Mitigation: Temporary enable negative trust anchor by resolvers operators

•  Side effect: Lots of non-polite Facebook and Twitter posts

31

Third party DNS operator (3-DNS)
•  Definition: An entity contracted by “owner” of the domain to operate DNS on

their behalf.

•  Who: 3-DNS Operators include CDNs, DNS specialists, appliance vendors,
friends, etc.

•  Millions of domains are operated by 3-DNS

•  Many “important” domains are operated by 3-DNS

•  Some domains use vanity DNS server names, but routing/traceroute do not
lie :-)

32

Domain Registry model:
•  Includes Registries,

Registrars, Resellers
and Registrants.

•  When developed did not
envision 3-DNS

33

What info does 3-DNS want to maintain?
•  NS records

•  DS records

•  A/AAAA records

•  need to be able to look up if glue is registered, add and delete.

34

NS
DS

Parent
Server

Child
Server

SOA
NS

DNSKEY

NS
DS

A & AAAA

Should be same

What happens today?
•  To change information in parent Registrant has to be in the loop

•  Not reliable, registrant may or may not take action

•  Not timely

•  Cut & Paste errors happen.

•  Registrant can give access to registration account to 3-DNS

•  BAD idea !!

35

3-DNS as registars?
•  Addresses part of the problem

•  Hard to become registrar in all ccTLD’s

•  Registrars/resellers are frequently partners with 3-DNS

36

What is desired by 3-DNS?
•  Ability to gain authenticated permission to maintain delegation information for

customers

•  Ability to learn where to change information and connect there

•  WHOIS has last century contact information when it has any, frequently
unusable

37

How can this be done?
•  #1 In-band signaling

•  When DNSSEC is enabled

•  Child zone can advertise what the contents of NS and DS should be

•  via NS and CDS/CDNSKEY records when DNSSEC is present
[RFC7344]

•  Not specified how to tickle right parental agent.

•  Not possible to say do it NOW!!

38

Vision – #2 Registry System interface
•  If 3-DNS gets authenticated and authorized to make changes to NS/DS/glue

for specific domain, these changes can be injected into registration systems
via

•  Registars/Resellers

•  Registries

•  Hence: Updates can take place at Internet speed

39

Goal: DNS operators change < 4 hours
•  Assume Changes in parent take less than 1 hour

•  Operations:

•  provision new operator

•  change NS in parent and old operator (if possible)

•  wait for resolvers

•  Precondition: Child and Parent NS

•  TTL <= 2 hours

40

Goal: DNSSEC KSK rollover in 6 hours
•  Assume changes in TLD’s take less than 1 hour

•  Operations:

•  update DNSKEY and/or DS;

•  switch KSK signing key;

•  purge old DS and DNSKEY records (Not in critical path)

•  Child DNSKEY set < 1 hour TTL

•  Child and Parent NS + DS sets TTL <= 2 hours

41

Call for Action
•  Start discussion on what the right goals and policies are

•  Proposed goals:

•  Get TLD’s to adopt lower TTL <= 2H

•  Give 3-DNS access to maintain Delegation information

•  Bonus: get registries and registrars to support new DNSSEC algorithms by
default in particular algorithm 13 ECDSA

42

ANY queries

43

Deciding to Neuter “ANY” queries
•  An ANY query is a bad idea

•  Amplification, Information leaks,
Non reliable responses, Expensive

•  Applications (and people) assume
ANY returns ALL records of all types

•  Firefox had a version that used
ANY to retrieve A & AAAA in one
query

44

https://tools.ietf.org/html/draft-ogud-dnsop-any-notimp-00
https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/

Responses to neutering “ANY” queries
•  Positive!

•  “We have this problem”

•  “We spend too much on bandwidth
because of ANY queries”

•  “Yes stop this information leak”

45

•  Negative!

•  “You are hurting Firefox and Qmail”

•  “you are idiots !!!!”

•  “I use ANY to debug my systems
all the time!!!”

The qmail issue
•  On DNSOP mailing list D. J. Bernstein wrote an explanation as to what Qmail

is doing

•  Translation: Qmail uses ANY as a probabilistic optimization

•  Will fall back to normal resolution if ANY does not yield “useful” answer

•  Hence: CloudFlare will not break qmail

46

https://mailarchive.ietf.org/arch/msg/dnsop/kXSApuM4i0WLoIo3_OhrCcAZ-cc

Why does CloudFlare care about “ANY”
•  Expensive and complex to enumerate all RR Type for a name

•  We hate big answers

•  Sometimes not even available => incomplete answers

•  Deploying DNSSEC with on-line signing on the edge at massive scale

•  Waste of effort to sign all the RR types the query origin does not care about

47

CloudFlare implemented “ANY”

48

https://tools.ietf.org/html/draft-jabley-dnsop-refuse-any-01

 $ dig +nocmd +nostats ANY cloudflarestatus.com @fred.ns.cloudflare.com
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56815
 ;; flags: qr rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
 ;; WARNING: recursion requested but not available

 ;; QUESTION SECTION:
 ;cloudflarestatus.com. IN ANY

 ;; ANSWER SECTION:
 cloudflarestatus.com. 3789 IN HINFO "Please stop asking for ANY" "See draft-jabley-dnsop-refuse-any"

 $

CloudFlare implemented “ANY”
•  No customers use HINFO in their zones → No need for new type

•  We can generate this on the fly early in the processing

•  No need for multiple database lookups, discovery of all types, or multiple
signatures

•  Simplified our code as we can remove ANY processing from various parts

•  Cached as-is by resolvers → stops retries

•  Accepted by resolvers → doesn’t break … applications

49

Summary – Questions & Answers

50

Martin J. Levy, Network Strategy
@mahtin / @cloudflare

http://www.cloudflare.com/
AS13335 IXP peering information

at PeeringDB

